Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659946

RESUMEN

In an era where the established lines between cell identities are blurred by intra-lineage plasticity, distinguishing between stable and transitional states becomes imperative. This challenge is particularly pronounced within the Group 1 ILC lineage, where the similarity and plasticity between NK cells and ILC1s obscure their classification and the assignment of their unique contributions to immune regulation. This study exploits the unique property of Asialo-GM1 (AsGM1)-a membrane lipid associated with cytotoxic attributes absent in ILC1s-as a definitive criterion to distinguish between these cells. By prioritizing cytotoxic potential as the cardinal differentiator, our strategic use of the AsGM1 signature achieved precise delineation of NK cells and ILC1s across tissues, validated by RNA-seq analysis. This capability extends beyond steady-state classifications, adeptly capturing the binary classification of NK cells and ILC1s during acute liver injury. By leveraging two established models of NK-to-ILC1 plasticity driven by TGFß and Toxoplasma gondii , we demonstrate the stability of the AsGM1 signature, which sharply contrasts with the loss of Eomes. This signature identified a spectrum of known and novel NK cell derivatives-ILC1-like entities that bridge traditional binary classifications in aging and infection. The early detection of the AsGM1 signature at the immature NK (iNK) stage, preceding Eomes, and its stability, unaffected by transcriptional reprogramming that typically alters Eomes, position AsGM1 as a unique, site-agnostic marker for fate mapping NK-to-ILC1 plasticity. This provides a powerful tool to explore the expanding heterogeneity within the Group 1 ILC landscape, effectively transcending the ambiguity inherent to the NK-to-ILC1 continuum.

2.
mBio ; 15(4): e0028324, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38407123

RESUMEN

Toxoplasma gondii is a widespread intracellular protozoan pathogen infecting virtually all warm-blooded animals. This parasite acquires host-derived resources to support its replication inside a membrane-bound parasitophorous vacuole within infected host cells. Previous research has discovered that Toxoplasma actively endocytoses host proteins and transports them to a lysosome-equivalent structure for digestion. However, few molecular determinants required for trafficking of host-derived material within the parasite were known. A recent study (Q.-Q. Wang, M. Sun, T. Tang, D.-H. Lai, et al., mBio 14:e01309-23, 2023, https://doi.org/10.1128/mbio.01309-23) identified a critical role for membrane anchoring of proteins via prenylation in the trafficking of endocytosed host proteins by Toxoplasma, including an essential Toxoplasma ortholog of Rab1B. The authors also found that TgRab1 is crucial for protein trafficking of the rhoptry secretory organelles, indicating a dual role in endocytic and exocytic protein trafficking. This study sets the stage for further dissecting endomembrane trafficking in Toxoplasma, along with potentially exploiting protein prenylation as a target for therapeutic development.


Asunto(s)
Toxoplasma , Animales , Toxoplasma/metabolismo , Prenilación de Proteína , Proteínas/metabolismo , Orgánulos/metabolismo , Transporte de Proteínas
3.
mSphere ; 9(1): e0059723, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38051073

RESUMEN

Toxoplasma gondii is a protozoan parasite that infects a broad spectrum of hosts and can colonize many organs and cell types. The ability to reside within a wide range of different niches requires substantial adaptability to diverse microenvironments. Very little is known about how this parasite senses various milieus and adapts its metabolism to survive, replicate during the acute stage, and then differentiate to the chronic stage. T. gondii possesses a lysosome-like organelle known as the plant-like vacuolar compartment (PLVAC), which serves various functions, including digestion, ion storage and homeostasis, endocytosis, and autophagy. Lysosomes are critical for maintaining cellular health and function by degrading waste materials and recycling components. To supply the cell with the essential building blocks and energy sources required for the maintenance of its functions and structures, the digested solutes generated within the lysosome are transported into the cytosol by proteins embedded in the lysosomal membrane. Currently, a limited number of PLVAC transporters have been characterized, with TgCRT being the sole potential transporter of amino acids and small peptides identified thus far. To bridge this knowledge gap, we used lysosomal amino acid transporters from other organisms as queries to search the T. gondii proteome. This led to the identification of four potential amino acid transporters, which we have designated as TgAAT1-4. Assessing their expression and sub-cellular localization, we found that one of them, TgAAT1, localized to the PLVAC and is necessary for normal parasite extracellular survival and bradyzoite differentiation. Moreover, we present preliminary data showing the possible involvement of TgAAT1 in the PLVAC transport of arginine.IMPORTANCEToxoplasma gondii is a highly successful parasite infecting a broad range of warm-blooded organisms, including about one-third of all humans. Although Toxoplasma infections rarely result in symptomatic disease in individuals with a healthy immune system, the incredibly high number of persons infected, along with the risk of severe infection in immunocompromised patients and the potential link of chronic infection to mental disorders, makes this infection a significant public health concern. As a result, there is a pressing need for new treatment approaches that are both effective and well tolerated. The limitations in understanding how Toxoplasma gondii manages its metabolism to adapt to changing environments and triggers its transformation into bradyzoites have hindered the discovery of vulnerabilities in its metabolic pathways or nutrient acquisition mechanisms to identify new therapeutic targets. In this work, we have shown that the lysosome-like organelle plant-like vacuolar compartment (PLVAC), acting through the putative arginine transporter TgAAT1, plays a pivotal role in regulating the parasite's extracellular survival and differentiation into bradyzoites.


Asunto(s)
Parásitos , Toxoplasma , Animales , Humanos , Toxoplasma/metabolismo , Vacuolas/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo
4.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961607

RESUMEN

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (Δ eIF1.2 ) markedly impeded bradyzoite cyst formation in vitro and in vivo . We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that Δ eIF1.2 parasites are defective in the upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in Δ eIF1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.

5.
EMBO J ; 42(23): e113155, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886905

RESUMEN

Apicomplexan parasites discharge specialized organelles called rhoptries upon host cell contact to mediate invasion. The events that drive rhoptry discharge are poorly understood, yet essential to sustain the apicomplexan parasitic life cycle. Rhoptry discharge appears to depend on proteins secreted from another set of organelles called micronemes, which vary in function from allowing host cell binding to facilitation of gliding motility. Here we examine the function of the microneme protein CLAMP, which we previously found to be necessary for Toxoplasma gondii host cell invasion, and demonstrate its essential role in rhoptry discharge. CLAMP forms a distinct complex with two other microneme proteins, the invasion-associated SPATR, and a previously uncharacterized protein we name CLAMP-linked invasion protein (CLIP). CLAMP deficiency does not impact parasite adhesion or microneme protein secretion; however, knockdown of any member of the CLAMP complex affects rhoptry discharge. Phylogenetic analysis suggests orthologs of the essential complex components, CLAMP and CLIP, are ubiquitous across apicomplexans. SPATR appears to act as an accessory factor in Toxoplasma, but despite incomplete conservation is also essential for invasion during Plasmodium falciparum blood stages. Together, our results reveal a new protein complex that mediates rhoptry discharge following host-cell contact.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Micronema , Proteínas Protozoarias/metabolismo , Filogenia , Orgánulos/metabolismo
6.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693549

RESUMEN

Toxoplasma gondii is a protozoan parasite that infects a broad spectrum of hosts and can colonize many organs and cell types. The ability to reside within a wide range of different niches requires substantial adaptability to diverse microenvironments. Very little is known about how this parasite senses various milieus and adapts its metabolism to survive, replicate during the acute stage, and then differentiate to the chronic stage. Most eukaryotes, from yeast to mammals, rely on a nutrient sensing machinery involving the TORC complex as master regulator of cell growth and cell cycle progression. The lysosome functions as a signaling hub where TORC complex assembles and is activated by transceptors, which both sense and transport amino acids, including the arginine transceptor SLC38A9. While most of the TORC components are lost in T. gondii , indicating the evolution of a distinct nutrient sensing mechanism, the parasite's lysosomal plant-like vacuolar compartment (PLVAC) may still serve as a sensory platform for controlling parasite growth and differentiation. Using SLC38A9 to query the T. gondii proteome, we identified four putative amino acid transporters, termed TgAAT1-4, that structurally resemble the SLC38A9 arginine transceptor. Assessing their expression and sub-cellular localization, we found that one of them, TgAAT1, localized to the PLVAC and is necessary for normal parasite extracellular survival and bradyzoite differentiation. Moreover, we show that TgAAT1 is involved in the PLVAC efflux of arginine, an amino acid playing a key role in T. gondii differentiation, further supporting the hypothesis that TgAAT1 might play a role in nutrient sensing. IMPORTANCE: T. gondii is a highly successful parasite infecting a broad range of warm-blood organisms including about one third of all humans. Although Toxoplasma infections rarely result in symptomatic disease in individuals with a healthy immune system, the incredibly high number of persons infected along with the risk of severe infection in immunocompromised patients and the potential link of chronic infection to mental disorders make this infection a significant public health concern. As a result, there is a pressing need for new treatment approaches that are both effective and well-tolerated. The limitations in understanding how Toxoplasma gondii manages its metabolism to adapt to changing environments and triggers its transformation into bradyzoites have hindered the discovery of vulnerabilities in its metabolic pathways or nutrient acquisition mechanisms to identify new therapeutic targets. In this work, we have shown that the lysosome-like organelle PLVAC, acting through the putative arginine transporter TgAAT1, plays a pivotal role in regulating the parasite's extracellular survival and differentiation into bradyzoites.

7.
Nat Commun ; 14(1): 3659, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339985

RESUMEN

Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.


Asunto(s)
Parásitos , Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Vacuolas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
PLoS Pathog ; 19(5): e1011344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141275

RESUMEN

The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.


Asunto(s)
Exosomas , Replicación Viral , Humanos , Transporte de Proteínas , Exosomas/metabolismo , Movimiento Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
9.
Autophagy Rep ; 2(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064813

RESUMEN

Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.

10.
Nat Commun ; 14(1): 2167, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061511

RESUMEN

Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.


Asunto(s)
Parásitos , Toxoplasma , Animales , Parásitos/metabolismo , Toxoplasma/metabolismo , Endocitosis , Proteínas Protozoarias/metabolismo
11.
mSphere ; 8(2): e0064922, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36786615

RESUMEN

Protein kinases of the protozoan parasite Toxoplasma gondii have been shown to play key roles in regulating parasite motility, invasion, replication, egress and survival within the host. The tyrosine kinase-like (TKL) kinase family of proteins are a set of poorly studied kinases that our recent studies have indicated play a critical role in Toxoplasma biology. In this study, we focused on TgTKL4, another member of the TKL family that is predicted to confer parasite fitness. Endogenous tagging of TgTKL4 identified it as a temporally oscillating kinase with dynamic localization in the parasite. Gene disruption experiments suggested that TgTKL4 is important for Toxoplasma propagation in vitro, and loss of this kinase resulted in replication and invasion defects. During parasite division, TgTKL4 expression was limited to the synthesis and mitosis-cytokinesis phases and, interestingly, loss of TgTKL4 led to defects in Toxoplasma morphology. Further analysis of the parasite cytoskeleton indicated that the subpellicular microtubules are shorter and more widely spaced in parasites lacking TgTKL4. Although loss of TgTKL4 caused only moderate changes in the gene expression profile, TgTKL4 null mutants exhibited significant changes in their global phospho-proteome, including in proteins that constitute the parasite cytoskeleton. Additionally, mice inoculated intraperitoneally with TgTKL4 knockout parasites showed increased survival rates, suggesting that TgTKL4 plays an important role in acute toxoplasmosis. Together, these findings suggest that TgTKL4 mediates a signaling pathway that regulates parasite morphology and is an important factor required for parasite fitness in vitro and in vivo. IMPORTANCE Toxoplasma gondii is a protozoan parasite that can cause life-threatening disease in mammals; hence, identifying key factors required for parasite growth and pathogenesis is important to develop novel therapeutics. In this study, we identified and characterized another member of the newly described TKL family, TgTKL4, a cell cycle-regulated kinase. By disrupting TgTKL4, we determined that this kinase is required for normal parasite growth in vitro and that loss of this kinase results in parasites with reduced competence in replication and invasion processes. Specifically, Toxoplasma parasites lacking TgTKL4 had defects in cytoskeletal arrangement, resulting in parasites with abnormal morphology. Phospho-proteome studies provided further clues that decreased phosphorylation of proteins that constitute the Toxoplasma cytoskeleton could be responsible for altered morphology in TgTKL4-deficient parasites. Additionally, loss of TgTKL4 resulted in attenuation of virulence in the animal model, suggesting that TgTKL4 is an important virulence factor. Hence, this study provides a novel insight into the importance of a TgTKL4 as a fitness-determining factor for Toxoplasma propagation in vitro and pathogenesis in vivo.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Ratones , Toxoplasma/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasmosis/parasitología , Ciclo Celular , Mamíferos
12.
J Cell Sci ; 136(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36718630

RESUMEN

Intracellular pathogens exploit cellular resources through host cell manipulation. Within its nonfusogenic parasitophorous vacuole (PV), Toxoplasma gondii targets host nutrient-filled organelles and sequesters them into the PV through deep invaginations of the PV membrane (PVM) that ultimately detach from this membrane. Some of these invaginations are generated by an intravacuolar network (IVN) of parasite-derived tubules attached to the PVM. Here, we examined the usurpation of host ESCRT-III and Vps4A by the parasite to create PVM buds and vesicles. CHMP4B associated with the PVM/IVN, and dominant-negative (DN) CHMP4B formed many long PVM invaginations containing CHMP4B filaments. These invaginations were shorter in IVN-deficient parasites, suggesting cooperation between the IVN and ESCRT. In infected cells expressing Vps4A-DN, enlarged intra-PV structures containing host endolysosomes accumulated, reflecting defects in PVM scission. Parasite mutants lacking T. gondii (Tg)GRA14 or TgGRA64, which interact with ESCRT, reduced CHMP4B-DN-induced PVM invaginations and intra-PV host organelles, with greater defects in a double knockout, revealing the exploitation of ESCRT to scavenge host organelles by Toxoplasma.


Asunto(s)
Toxoplasma , Animales , Toxoplasma/metabolismo , Vacuolas/metabolismo , Interacciones Huésped-Parásitos , Lisosomas/metabolismo , Proteínas Protozoarias/metabolismo , Mamíferos/metabolismo
13.
Anal Chem ; 95(2): 668-676, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36548400

RESUMEN

It is estimated that more than 2 billion people are chronically infected with the intracellular protozoan parasite Toxoplasma gondii (T. gondii). Despite this, there is currently no vaccine to prevent infection in humans, and there is no recognized curative treatment to clear tissue cysts. A major hurdle for identifying effective drug candidates against chronic-stage cysts has been the low throughput of existing in vitro assays for testing the survival of bradyzoites. We have developed a luciferase-based platform for specifically determining bradyzoite survival within in vitro cysts in a 96-well plate format. We engineered a cystogenic type II T. gondii PruΔku80Δhxgpr strain for stage-specific expression of firefly luciferase in the cytosol of bradyzoites and nanoluciferase for secretion into the lumen of the cyst (DuaLuc strain). Using this DuaLuc strain, we found that the ratio of firefly luciferase to nanoluciferase decreased upon treatment with atovaquone or LHVS, two compounds that are known to compromise bradyzoite viability. The 96-well format allowed us to test several additional compounds and generate dose-response curves for calculation of EC50 values indicating relative effectiveness of a compound. Accordingly, this DuaLuc system should be suitable for screening libraries of diverse compounds and defining the potency of hits or other compounds with a putative antibradyzoite activity.


Asunto(s)
Toxoplasma , Humanos , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Atovacuona/metabolismo , Atovacuona/farmacología , Luciferasas/genética , Luciferasas/metabolismo
14.
J Eukaryot Microbiol ; 69(6): e12951, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36218001

RESUMEN

Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.


Asunto(s)
Apicoplastos , Toxoplasma , Humanos , Vacuolas , Proteínas Protozoarias , Plantas
15.
J Cancer Res Clin Oncol ; 148(10): 2743-2757, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35556163

RESUMEN

PURPOSE: To investigate whether attenuated Toxoplasma is efficacious against solid tumors of pancreatic cancer and whether attenuated Toxoplasma improves the antitumor activity of αPD-1 antibody on pancreatic cancer. METHODS: The therapeutic effects of attenuated Toxoplasma NRTUA strain monotherapy and combination therapy of NRTUA with anti-PD-1 antibody on PDAC tumor volume and tumor weight of Pan02 tumor-bearing mice were investigated. We characterized the effects of combination therapy of NRTUA with anti-PD-1 antibody on tumor-infiltrating lymphocytes and tumor-specific IFN-γ by using immunohistochemistry, flow cytometry and ELISA. The antitumor mechanisms of combination therapy of NRTUA with anti-PD-1 antibody were investigated via depletion of CD8+ T cells and IL-12. RESULTS: NRTUA strain treatment inhibited tumor growth in a subcutaneous mouse model of PDAC through activating dendritic cells and increasing CD8+ T cell infiltration in the tumor microenvironment. More importantly, combination therapy of NRTUA with anti-PD-1 antibody elicited a significant antitumor immune response and synergistically controlled tumor growth in Pan02 tumor-bearing mice. Specifically, the combination treatment led to elevation of CD8+ T cell infiltration mediated by dendritic cell-secreted IL-12 and to tumor-specific IFN-γ production in the PDAC tumor microenvironment. Also, the combination treatment markedly reduced the immunosuppressive myeloid-derived suppressor cell population in PDAC mice. CONCLUSION: These findings could provide a novel immunotherapy approach to treating solid tumors of PDAC and overcoming resistance to anti-PD-1 agents in PDAC tumors.


Asunto(s)
Anticuerpos , Neoplasias Pancreáticas , Toxoplasma , Animales , Anticuerpos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inmunoterapia , Interleucina-12/inmunología , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Toxoplasma/inmunología , Microambiente Tumoral , Neoplasias Pancreáticas
16.
PLoS Pathog ; 18(5): e1010139, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512005

RESUMEN

The Toxoplasma gondii lytic cycle is a repetition of host cell invasion, replication, egress, and re-invasion into the next host cell. While the molecular players involved in egress have been studied in greater detail in recent years, the signals and pathways for triggering egress from the host cell have not been fully elucidated. A perforin-like protein, PLP1, has been shown to be necessary for permeabilizing the parasitophorous vacuole (PV) membrane or exit from the host cell. In vitro studies indicated that PLP1 is most active in acidic conditions, and indirect evidence using superecliptic pHluorin indicated that the PV pH drops prior to parasite egress. Using ratiometric pHluorin, a GFP variant that responds to changes in pH with changes in its bimodal excitation spectrum peaks, allowed us to directly measure the pH in the PV prior to and during egress by live-imaging microscopy. A statistically significant change was observed in PV pH during ionomycin or zaprinast induced egress in both wild-type RH and Δplp1 vacuoles compared to DMSO-treated vacuoles. Interestingly, if parasites are chemically paralyzed, a pH drop is still observed in RH but not in Δplp1 tachyzoites. This indicates that the pH drop is dependent on the presence of PLP1 or motility. Efforts to determine transporters, exchangers, or pumps that could contribute to the drop in PV pH identified two formate-nitrite transporters (FNTs). Auxin induced conditional knockdown and knockouts of FNT1 and FNT2 reduced the levels of lactate and pyruvate released by the parasites and lead to an abatement of vacuolar acidification. While additional transporters and molecules are undoubtedly involved, we provide evidence of a definitive reduction in vacuolar pH associated with induced and natural egress and characterize two transporters that contribute to the acidification.


Asunto(s)
Parásitos , Toxoplasma , Animales , Concentración de Iones de Hidrógeno , Parásitos/metabolismo , Perforina/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Vacuolas/metabolismo
17.
PLoS Pathog ; 17(12): e1010138, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898650

RESUMEN

Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.


Asunto(s)
Antígenos de Protozoos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Interacciones Huésped-Parásitos/fisiología , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Animales , Humanos , Ratones
18.
mSphere ; : e0044421, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34190588

RESUMEN

Egress from host cells is an essential step in the lytic cycle of T. gondii and other apicomplexan parasites; however, only a few parasite secretory proteins are known to affect this process. The putative metalloproteinase toxolysin 4 (TLN4) was previously shown to be an extensively processed microneme protein, but further characterization was impeded by the inability to genetically ablate TLN4. Here, we show that TLN4 has the structural properties of an M16 family metalloproteinase, that it possesses proteolytic activity on a model substrate, and that genetic disruption of TLN4 reduces the efficiency of egress from host cells. Complementation of the knockout strain with the TLN4 coding sequence significantly restored egress competency, affirming that the phenotype of the Δtln4 parasite was due to the absence of TLN4. This work identifies TLN4 as the first metalloproteinase and the second microneme protein to function in T. gondii egress. The study also lays a foundation for future mechanistic studies defining the precise role of TLN4 in parasite exit from host cells. IMPORTANCE After replicating within infected host cells, the single-celled parasite Toxoplasma gondii must rupture out of such cells in a process termed egress. Although it is known that T. gondii egress is an active event that involves disruption of host-derived membranes surrounding the parasite, very few proteins that are released by the parasite are known to facilitate egress. In this study, we identify a parasite secretory protease that is necessary for efficient and timely egress, laying the foundation for understanding precisely how this protease facilitates T. gondii exit from host cells.

19.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904393

RESUMEN

Many of the world's warm-blooded species are chronically infected with Toxoplasma gondii tissue cysts, including an estimated one-third of the global human population. The cellular processes that permit long-term persistence within the cyst are largely unknown for T. gondii and related coccidian parasites that impact human and animal health. Herein, we show that genetic ablation of TgATG9 substantially reduces canonical autophagy and compromises bradyzoite viability. Transmission electron microscopy revealed numerous structural abnormalities occurring in ∆atg9 bradyzoites. Intriguingly, abnormal mitochondrial networks were observed in TgATG9-deficient bradyzoites, some of which contained numerous different cytoplasmic components and organelles. ∆atg9 bradyzoite fitness was drastically compromised in vitro and in mice, with very few brain cysts identified in mice 5 weeks post-infection. Taken together, our data suggests that TgATG9, and by extension autophagy, is critical for cellular homeostasis in bradyzoites and is necessary for long-term persistence within the cyst of this coccidian parasite.


Asunto(s)
Autofagia , Encéfalo/parasitología , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis Cerebral/parasitología , Animales , Encéfalo/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Ratones Endogámicos CBA , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/ultraestructura , Factores de Tiempo , Toxoplasma/genética , Toxoplasma/patogenicidad , Toxoplasma/ultraestructura , Toxoplasmosis Cerebral/patología , Vacuolas/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura , Virulencia
20.
PLoS Negl Trop Dis ; 15(3): e0009199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651824

RESUMEN

BACKGROUND: Diagnosis of toxoplasmic encephalitis (TE) is challenging under the best clinical circumstances. The poor clinical sensitivity of quantitative polymerase chain reaction (qPCR) for Toxoplasma in blood and CSF and the limited availability of molecular diagnostics and imaging technology leaves clinicians in resource-limited settings with few options other than empiric treatment. METHOLOGY/PRINCIPLE FINDINGS: Here we describe proof of concept for a novel urine diagnostics for TE using Poly-N-Isopropylacrylamide nanoparticles dyed with Reactive Blue-221 to concentrate antigens, substantially increasing the limit of detection. After nanoparticle-concentration, a standard western blotting technique with a monoclonal antibody was used for antigen detection. Limit of detection was 7.8pg/ml and 31.3pg/ml of T. gondii antigens GRA1 and SAG1, respectively. To characterize this diagnostic approach, 164 hospitalized HIV-infected patients with neurological symptoms compatible with TE were tested for 1) T. gondii serology (121/147, positive samples/total samples tested), 2) qPCR in cerebrospinal fluid (11/41), 3) qPCR in blood (10/112), and 4) urinary GRA1 (30/164) and SAG1 (12/164). GRA1 appears to be superior to SAG1 for detection of TE antigens in urine. Fifty-one HIV-infected, T. gondii seropositive but asymptomatic persons all tested negative by nanoparticle western blot and blood qPCR, suggesting the test has good specificity for TE for both GRA1 and SAG1. In a subgroup of 44 patients, urine samples were assayed with mass spectrometry parallel-reaction-monitoring (PRM) for the presence of T. gondii antigens. PRM identified antigens in 8 samples, 6 of which were concordant with the urine diagnostic. CONCLUSION/SIGNIFICANCES: Our results demonstrate nanoparticle technology's potential for a noninvasive diagnostic test for TE. Moving forward, GRA1 is a promising target for antigen based diagnostics for TE.


Asunto(s)
Encefalitis/diagnóstico , Encefalitis/parasitología , Infecciones por VIH/complicaciones , Hidrogeles , Nanopartículas , Toxoplasmosis/complicaciones , Adulto , Antígenos de Protozoos/líquido cefalorraquídeo , Antígenos de Protozoos/orina , Encefalitis/complicaciones , Encefalitis/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Toxoplasma , Toxoplasmosis/líquido cefalorraquídeo , Toxoplasmosis/diagnóstico , Toxoplasmosis/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...